嬴政天下
投稿
全部 197 AI原创 125 海外精选 72 AI测评 30
全部 30 🏠 本站权威测评 0 🔬 第三方权威测评 30
SGLang 性能优化 MoE模型 推理优化 LLM推理 RL训练 基准测试 AI推理 NVIDIA DGX Spark 模型量化 MoE优化 GB200 AI技术 EAGLE3 FP8
LMSYS

SGLang实现确定性推理与可重现RL训练

本文介绍SGLang团队在实现确定性推理方面的努力,以及与slime团队合作推动可重现RL训练的进展。基于Thinking Machines Lab的batch-invariant算子,SGLang实现了完全确定性推理,同时兼容chunked prefill、CUDA graphs、radix cache和非贪婪采样,使用CUDA graphs可获2.8x加速,性能开销仅34.35%(优于TML的61.5%)。进一步,与slime结合,实现100%可重现RL训练,在Qwen3-8B上验证两轮独立训练曲线完全一致。通过全面测试套件验证确定性,支持FlashInfer、FlashAttention 3和Triton后端,适用于调试与科学实验。未来将优化性能至20%以内开销。

SGLang 确定性推理
02-04 34
LMSYS

统一FP8:超越混合精度,实现稳定加速的MoE RL训练

我们实现了RL中全FP8采样和训练流程。实验显示,对于MoE模型,使用BF16训练结合FP8 rollout时,模型越大,训练-推理不一致性越严重。相比之下,统一FP8用于训练和rollout,能有效消除量化误差导致的训练-推理不一致,提升RL训练的速度与稳定性。本文详述FP8硬件基础、格式选择、尺度计算及量化策略,支持Qwen3-4B和Qwen3-30B-A3B的miles框架即插即用,由InfiXAI、Ant Group AQ、SGLang RL和Miles团队联合完成。(128字)

FP8 RL训练
02-04 12
LMSYS

单H200部署1TB模型:INT4 QAT RL端到端实践

受Kimi K2团队启发,SGLang RL团队成功实现INT4 Quantization-Aware Training (QAT)全流程。通过训练阶段的fake quantization和推理阶段的真实W4A16量化,实现了与BF16全精度相当的稳定性和训推一致性。极致INT4压缩让约1TB规模模型单节点H200(141GB)部署,避免跨节点通信瓶颈,大幅提升部署效率。本文详解开源生态下完整pipeline的技术细节,提供高性能低成本的实用参考。项目由SGLang RL、InfiXAI、蚂蚁集团Asystem & AQ Infra、slime和RadixArk团队联合完成,已同步至slime和Miles社区。(128字)

INT4 QAT 量化感知训练
02-04 13

© 1998-2026 嬴政天下 www.winzheng.com

秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

RSS Sitemap