嬴政天下
投稿
全部 197 AI原创 125 海外精选 72 AI测评 30
全部 30 🏠 本站权威测评 0 🔬 第三方权威测评 30
SGLang 性能优化 MoE模型 推理优化 LLM推理 RL训练 基准测试 AI推理 NVIDIA DGX Spark 模型量化 MoE优化 GB200 AI技术 EAGLE3 FP8
LMSYS

KTransformers加速SGLang的混合推理

KTransformers项目为Mixture-of-Experts(MoE)模型的CPU/GPU混合推理提供了一系列优化,显著提升了计算效率。通过引入AMX优化的CPU内核和高效的设备协调机制,KTransformers解决了传统混合推理中的协调开销和计算资源未有效利用的问题,使得在单机上部署万亿参数模型成为可能。

AI技术 混合推理
02-04 38
LMSYS

SGLang-Diffusion 两个月的进展

自2025年11月初发布以来,SGLang-Diffusion在社区中引起了广泛关注和应用。我们非常感谢开源开发者的反馈和贡献。经过两个月的优化,SGLang-Diffusion的速度提升了2.5倍。本文总结了我们在模型支持、LoRA支持、并行性、硬件兼容性等方面的进展,并详细介绍了关键的技术改进和性能基准测试结果。

AI技术 深度学习
02-04 37
LMSYS

SGLang Pipeline Parallelism:百万Token上下文扩展与性能突破

SGLang推出高度优化的Pipeline Parallelism(PP)实现,专为超长上下文推理设计。通过集成Chunked Pipeline Parallelism、Asynchronous P2P Communication和Dynamic Chunking机制,该实现实现行业领先性能,并无缝兼容其他并行策略。在多节点部署中,PP4 TP8配置下DeepSeek-V3.1的Prefill Throughput达TP8的3.31倍,较TP32提升30.5%。同时,TTFT降低高达67.9%,强扩展效率达82.8%。本文深入剖析PP在通信量、气泡比率及实现复杂度上的优势,证明其在跨节点大规模扩展中的独特价值,为万亿参数模型超长上下文推理提供高效开源方案。(128字)

SGLang Pipeline Parallelism
02-04 42
LMSYS

AMD GPU 上 FP4 混合精度推理优化

随着前沿大语言模型(LLM)规模不断扩大,对 GPU 计算力和内存带宽的需求激增。GPU 厂商和模型开发者正转向低精度浮点格式,其中 FP4(4 位浮点)量化备受关注,例如 FP4 量化的 Llama 3.3 70B 模型体积缩小 3.5 倍,同时在 MMLU 等基准上质量损失最小。然而,现有的 AMD Instinct MI250 和 MI300 系列 GPU 缺乏原生 FP4 支持。为此,我们开发了 Petit——专为 AMD GPU 优化的 FP16/BF16 × FP4 混合精度内核集合。它在 MI200 和 MI300 系列上实现 FP4 模型高效推理:使用 SGLang 时端到端性能提升 1.74 倍,矩阵乘法比 hipBLASLt 快至 3.7 倍。Petit 已开源并集成至 SGLang 0.4.10,支持无缝部署 Llama 3.3 70B FP4 模型。(128 字)

AMD GPU FP4量化
02-04 71
LMSYS

SGLang实现确定性推理与可重现RL训练

本文介绍SGLang团队在实现确定性推理方面的努力,以及与slime团队合作推动可重现RL训练的进展。基于Thinking Machines Lab的batch-invariant算子,SGLang实现了完全确定性推理,同时兼容chunked prefill、CUDA graphs、radix cache和非贪婪采样,使用CUDA graphs可获2.8x加速,性能开销仅34.35%(优于TML的61.5%)。进一步,与slime结合,实现100%可重现RL训练,在Qwen3-8B上验证两轮独立训练曲线完全一致。通过全面测试套件验证确定性,支持FlashInfer、FlashAttention 3和Triton后端,适用于调试与科学实验。未来将优化性能至20%以内开销。

SGLang 确定性推理
02-04 31
LMSYS

GB200 NVL72部署DeepSeek优化(二):预填充3.8倍、解码4.8倍吞吐量

GB200 NVL72作为深度学习最强硬件之一,本文分享SGLang团队在上篇博客基础上,对DeepSeek V3/R1推理性能的进一步优化,包括FP8 attention、NVFP4 MoE、大规模专家并行(EP)、预填充-解码分离等技术。在FP8 attention和NVFP4 MoE下,SGLang实现每GPU预填充26,156 tokens/s、解码13,386 tokens/s(2000 token输入),较H100提升3.8倍和4.8倍。即使采用传统BF16 attention和FP8 MoE,也达18,471和9,087 tokens/s。优化涵盖低精度计算、更快内核集成、计算通信重叠等,精度损失微乎其微。实验验证了端到端性能大幅提升,并分析了内核级加速效果。(128字)

SGLang DeepSeek
02-04 28
LMSYS

携手SGLang:在H20-96G上高效部署DeepSeek-R1的最佳实践

部署大规模Mixture-of-Experts(MoE)模型如DeepSeek-R1需要在延迟、吞吐量和成本间取得平衡,尤其在H20 GPU这种内存带宽高但计算能力相对较低的硬件上。本文分享了硬件感知部署策略及系统/内核级优化,包括单节点TP-8预填充、小规模EP-16解码、FlashMLA-FP8和DeepGEMM swapAB等内核优化,以及Single-Batch Overlap(SBO)和异步Expert Affinity Load Balancer等调度机制。实验显示,每节点在4096 token输入序列上实现16.5k输入token/s和5.7k输出token/s的SOTA性能,这是H20上首次全面工业实践研究。

DeepSeek-R1 H20 GPU
02-04 27
LMSYS

PD-Multiplexing:GreenContext驱动的高好吞吐LLM服务新范式

本文介绍我们在SGLang中支持全新服务范式PD-Multiplexing的初步成果,该范式旨在提升LLM服务的goodput。通过NVIDIA新功能GreenContext,实现同一进程内GPU资源的轻量级细粒度分区,支持prefill和decode阶段的intra-GPU空间共享,避免KV cache跨实例迁移,并动态分配SM资源。该方法解耦prefill和decode执行,确保严格SLO(如TTFT和ITL),基准测试显示在H200上相比chunked-prefill显著提升TTFT,在8xA100s真实负载下goodput最高提升3.06x。未来将提供详细教程。(128字)

PD-Multiplexing GreenContext
02-04 25
LMSYS

SGLang 即日支持 DeepSeek-V3.2 稀疏注意力机制

SGLang 团队宣布即日(Day 0)支持 DeepSeek-V3.2 模型。该模型基于 DeepSeek-V3.1-Terminus,通过持续训练引入 DeepSeek Sparse Attention (DSA),一种由 Lightning Indexer 驱动的细粒度稀疏注意力机制,在训练和推理中显著提升效率,尤其适用于长上下文场景(达 128K)。SGLang 集成了 Lightning Indexer 支持、Native Sparse Attention (NSA) 后端(包括 FlashMLA 和 FlashAttention-3 Sparse),并优化了动态缓存管理,降低内存开销,实现 GPU 优化的稀疏注意力。文章提供 NVIDIA、AMD 和 NPU 的快速启动命令,并展望未来功能如 Multi-token Prediction (MTP) 和 FP8 KV Cache。

SGLang DeepSeek-V3.2
02-04 28
LMSYS

NVIDIA DGX Spark 深度评测:本地 AI 推理新标杆

NVIDIA DGX Spark 是一款紧凑型一体机,将超级计算级性能带入桌面工作站。通过 NVIDIA 早期访问计划,我们深入测试了这款设备。它搭载 GB10 Grace Blackwell Superchip,提供 128 GB 统一内存,支持 FP4 精度下高达 1 PFLOP 计算力。测试显示,在 SGLang 和 Ollama 框架下,DGX Spark 擅长运行小型模型(如 Llama 3.1 8B),批处理时吞吐量出色;大型模型(如 Llama 3.1 70B)适合原型开发。统一内存设计消除数据传输开销,投机解码可加速 2 倍。尽管内存带宽(273 GB/s)是瓶颈,但其外观精美、散热优秀,适合模型实验、边缘 AI 研究。两台联机可运行 4050 亿参数模型,是开发者理想平台。(128 字)

NVIDIA DGX Spark AI推理
02-04 47
LMSYS

SGLang 与 NVIDIA 携手加速 InferenceMAX 基准与 GB200 性能

SGLang 和 NVIDIA 团队紧密合作,针对 NVIDIA Blackwell 架构优化推理性能,利用 FP8 attention、NVFP4 MoE 和 PD-Disaggregated Expert Parallelism 等特性,在 GB200 NVL72 系统上实现 DeepSeek R1 模型的惊人吞吐量:每 GPU 预填充 26k 输入 token/秒,解码 13k 输出 token/秒。在 SemiAnalysis InferenceMAX v1 基准中,Blackwell GPU(GB200/B200)搭配 SGLang 比 Hopper GPU(H100/H200)性能提升高达 4 倍,覆盖整个延迟-吞吐量 Pareto 前沿。SGLang 通过 Prefill-Decode 分离、大规模专家并行等系统级优化,充分发挥 Blackwell 硬件潜力。未来将进一步优化 DeepSeek v3.2 等模型,并加强与 SemiAnalysis 合作。(128 字)

SGLang NVIDIA Blackwell
02-04 26
LMSYS

SGLang-Jax:原生TPU推理的开源利器

SGLang-Jax是由SGLang-Jax团队推出的全新开源推理引擎,完全基于Jax和XLA构建。它融合SGLang的高性能服务器架构,利用Jax编译模型前向传播,实现快速原生TPU推理,同时支持连续批处理、前缀缓存、张量并行、专家并行、推测解码、内核融合等高级特性。基准测试显示,其性能匹敌或超越其他TPU推理方案,并在GPU方案中保持竞争力。项目代码开源于GitHub,适用于Google DeepMind、xAI等领先AI实验室的Jax生态。架构纯Jax实现,集成Ragged Paged Attention v3、MoE优化及EAGLE推测解码等关键技术,大幅降低调度开销并提升吞吐量。未来路线图涵盖更多模型支持、量化内核及RL集成。(128字)

SGLang-Jax TPU推理
02-04 24
1 2 3

© 1998-2026 嬴政天下 www.winzheng.com

秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

RSS Sitemap